问答题
判定下列各反常积分的收敛性,如果收敛,计算反常积分的值:
计算以xOy面上的圆周x2+y2=ax围成的闭区域为底,而以曲面z=x2+y2为顶的曲顶柱体的体积。
问答题计算以xOy面上的圆周x2+y2=ax围成的闭区域为底,而以曲面z=x2+y2为顶的曲顶柱体的体积。
若f(x)是连续的奇函数,证明是偶函数;若f(x)是连续的偶函数,证明是奇函数。
求由平面y=0,y=kx(k>0),z=0以及球心在原点、半径为R的上半球面所围成的在第一卦限内的立体的体积。
问答题求由平面y=0,y=kx(k>0),z=0以及球心在原点、半径为R的上半球面所围成的在第一卦限内的立体的体积。