问答题
已知定点P(6,4)与定直线l1:y=4x,过P点的直线l与l1交于第一象限Q点,与x轴正半轴交于点M,求使△OQM面积最小的直线l方程。
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1。 (1)求椭圆C的标准方程; (2)若直线Z:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。
已知△ABC中,A(2,-1),B(4,3),C(3,-2),求: (1)BC边上的高所在直线方程; (2)AB边中垂线方程; (3)∠A平分线所在直线方程。
以双曲线的右焦点为圆心,且与其渐近线相切的圆方程是()。
A.x2+y2-10x+9=0 B.x2+y2-10x+16=0 C.x2+y2+10x+16=0 D.x2+y2+10x+9=0
微信扫一扫,加关注免费搜题