问答题
计算题
证明:若函数f0(x)在[0,a]连续,n∈N+,有fn(x)=
fn-1(t)dt,0≤x≤a,则函数列{fn(x)}在[0,a]一致收敛于0。(提示:
M>0,
x∈[0,a],有|f0(x)|≤M,|f1(x)|≤
|f0(t)|dt≤Mx,又有|f2(x)|≤M
,…。)
【参考答案】
点击查看答案
